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Functional integrals for parabolic differential equations: 11. 
Time-dependent generators 

Robert Alickit and Danuta Makowiect 
Instituut voor Theoretische Fysica, Universiteit Leuven, 8-3030 Leuven, Belgium 

Received 14 January 1986, in final form 16 June 1986 

Abstract. The convergence of a discretisation procedure for path integrals associated with 
a class o f  parabolic second-order differential equation with time-dependent coefficients is 
shown. The proof is based on a generalisation of the product formula. 

1. Introduction 

We generalise the results of our previous paper (Alicki and  Makowiec 1985, hereafter 
referred to as AM) for the case of time-dependent coefficients in a differential equation. 
We consider the following differential equation: 

(1.1) 

where x = ( X I  . . . x ” )  E R”, D = ( a ,  . . . a ” ) ,  a, = a/axa and 
(1.2) 

Here the Einstein summation convention is used for Greek letters only. We assume 
that for all x ~ i w ” ,  t E  [a ,  b ] ,  a a P ( x ;  t )  is a strictly positive matrix. We denote by 
aUp(x;  t )  the inverse of a m P ( x ;  t ) ,  by a$(x ;  f )  and a $ ( x ;  t )  the square-root matrices 
and  by la (x ;  t ) l  the determinant of a U P ( x ;  t ) .  

The formal path integral representation for the solution of (1.1) may be written as 
follows. 

(i) Phase space form 

af(x; t ) / a t  = T(x,  D ;  t).f(x; t )  

T(x, D;  t )  = aaP(x ;  t ) d a d ,  + b ” ( x ;  t ) d ,  + c ( x ;  t ) ,  

t E [a ,  b l  

d X k  d p k  A x a  f (x0 ;  to) = lim 
k = l  

A t - 0  

(ii) Configuration space form (obtained by integration over p k )  

t Permanent address: Institute of Theoretical Physics and Astrophysics, Gdansk University, PL-80-952. 
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where a s s  = r h  < t + ,  < .  . .<  t ,  < r , ! =  t b 

= t h  - 1  - t h  A t  = max{Arh} AX::=X;-,-X;. 

In  A M  we proved the existence of the limits (1.3) and (1.4) for the case of time 
independent a e P ( x ) ,  b" (x ) ,  c ( x )  in the strong topology in different spaces Lp(rW") and 
using the equipartition Atk  = ( t  - s)/  N. To extend these results we shall prove in the 
next section a product theorem and in the last section we shall apply it to the class of 
differential equations of type (1.1) and (1.2) on the space L ' (R" ) .  The applications of 
the formal expressions ( 1.3) and (1.4) to discretisation procedures evaluating functional 
integrals associated with classical and quantum physics problems are presented, for 
example, in a book by Langouche er a1 (1982). 

2. Generalised product theorem 

Let us consider the following evolution equation on a Banach space X :  

df;ldr = [Z+ L( t ) l f ;  (2.1) 
with initial condition h, where (t,  s) E 4 = {(  t ,  s), t 2 s, t, s E [a, b]}. We make the fol- 
lowing assumptions. 

(A )  Z is a generator of a strongly continuous one-parameter contraction semigroup 
on X with domain 22 and core 9,,. 

(B) For t E [a ,  b ] ,  L ( t )  defined on 9, is a dissipative operator and  the function 
t + L(t).fE X is strongly continuous for all f~ 9,. Moreover, there exists a strong 
derivative 

L'(r)f= (d /d r )L( t ) f  for all f~ 2,, 

which is again a strongly continuous function of r E [a ,  b]. 
(C) There exist constants C, < 1, C2C, such that 

lIL(t)fll Cl IIZflI + czllfll IIL'(r)fll c3lllflll (2.2) 
for all f~ 5%, t E [a, b l  where l l ~ f ~ ~ ~  = liZfll+ l lfl l is the so-called graph norm. 

Remarks. 
(1)  9 with the graph-norm / / I  I / /  is a Banach space (Davies 1980). 
(2) There exists a unique extension of Z +  L( t )  to 9 (Davies 1980). 
(3) There exists a two-parameter family { U (  1, s),  ( 1 ,  s )  E $} of linear contractions 

( a )  for any partition s = rh  < r h - ,  . . . < r ,  < t o =  t 
on X such that 

U ( r ,  s)f= lim exp[Ar , (Z+L( r , ) ) ] .  . . exp [Arh(Z+L( r , ) ) ] f  
N - X  

At-11 

for all f €  X ,  where A t  = maxk{Ath = t,, - th-,}, 
( b )  U (  t, s )  is uniformly strongly continuous in 4 and W (  t, s )  defined by the formula 

[ Z +  L(r ) IU( t ,  s)f= W(t, s ) [ Z +  L(s) l f  f E  9 
is a bounded operator-valued function uniformly strongly continuous in 4, 

( c )  for J E 9 we have fi = U(r ,  s)L E 9 and 

d f / d t = [ Z + L ( O l f  
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( d )  the semigroup property holds: 

U (  t, r )  U (  r, s) = U (  t, s) for a s s s r s t s 6  

( e )  for all f E 9 the map t + U (  t, s ) f  is a strongly continuous function from [s, 61 
into the Banach space 9 (with the norm 1 1 1  1 1 1 )  (Reed and Simon 1975, theorem X.70;  
Dollard and Friedman 1978, corollary 1 after theorem 12). 

We suppose that there exists a two-parameter family of bounded linear operators 
on X :  

IF(?, 7 ) ;  t E  [ a ,  61, 7 E  (0 ,S)I  F ( t , r ) : X + X  

such that 
( i )  / I F ( t , r ) l l s e a ’  where U E R ,  t E [ a , 6 ] ,  T E ( O , S ) ,  
( i i )  for any f~ 9, the following limit exists uniformly in t E [a ,  61: 

lim T - ’ {  F (  t ,  ~ ) f - f }  = { Z  + L( t)}j 
7-0 

( i i i )  there exists a constant D < CC such that for all f~ 

SUP T - ’ I I F ( t ,  .)f-fll s ~lllflll. 
I E  [a.hl  
7€(0,8) 

The operator F (  t ,  7 )  approximates the propagator U( t + 7, t )  in the following sense. 

Lemma 2.1. Let 

R ( t ,  7 ) f  = 7-  ’ { F (  t, ~ ) f  - U ( t + 7, t ) f  } for f E 9. 

Then there exists E > 0 such that 

llR(4 7) f l l  s Elllflll 

uniformly for t E [ a ,  61, T E  (0, 6 ) ,  and 

llR(t, 7)fll + o  as 7 -0  (2.4) 

uniformly on compact subsets of the Banach space (9, / / I  1 1 1 )  and uniformly in t E [a ,  b ] .  

The first term on the R H S  is bounded by ( D  + max{ C, , C ‘ ~ } ) ~ ~ ~ f l ~ ~  because of conditions 
( i i i )  and (C).  Now using the identity 

{ U (  + 7, f ) f  - f - d Z  + L( f 11 f j  = [, d r [ W (  r, 1 - 1 l[Z + L( t 11 f (2.6) 

the boundness of W(r,  t )  and the fact that &, is dense in 9, we obtain (2.3) for all 
f~ 9. Moreover by ( i i ) ,  (2.6) and remark 3 ,  R ( r ,  7 ) f  is strongly convergent to 0 for 
any f~ 9o and uniformly in t E [a ,  b]. Hence by (2.3) we conclude that (2.4) holds for 
all f~ 9 uniformly in t and uniformly on the compact subsets of the Banach space 9. 

I f 7  
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Now we are able to prove the product formula. 

Theorem 2.1. Assume that the operators { Z i  L( t ) ,  t E [ a ,  b ] }  satisfy conditions (A) ,  
(B)  and (C) and there exists a family of operators { F ( t ,  T ) ,  t E  [ a ,  61, T E  (0, 8 ) }  for 
which conditions ( i ) - ( i i i )  are fulfilled. 

Then for any J E  X 

U(r ,  s ) f =  lim F ( t , ,  A t , ) .  . . F ( t N ,  AtN)f  
N - x  
21-0 

where t = t o >  t1  . . .> t N  = s, A t k  = tL- i  - r k ,  A t  = max{Atk} and N A t  is bounded. 

(2.7) 

r ,r 'E [ s. f ] 

From remark 3 it follows that the set { U ( r ' ,  s)J; r ' E  [ s ,  t ] }  is a compact subset of the 
Banach space 9. Hence, by lemma 2.1, the R H S  of (2.7) tends to 0 as A r + O  for all 
f~ 9. Since 9 is dense in X the same holds for all f~ X .  

3. The convergence theorem in L2(R") 

Consider the following differential equation in the Hilbert space L'(R"): 

a f ( x ;  t ) / a t  = [ A + [ ~ ( x ,  D; t ) ] f ( x ;  t ) ]  (3.1) 

where f( ; t )  E L2(Ry) ,  t E [ a ,  b ] ,  A denotes the Laplace operator and 

P ( x ,  D ;  t )  = c ieP(x;  t ) a , a P  + b " ( x ;  t)a, + c ( x ;  t ) .  (3.2) 

We make the following assumptions. 
( I )  2 ( x ,  D ;  t )  is symmetric on C,"(R") for all t E [ a ,  b ]  and 

a z =  sup (a'"P(x; t ) ) ' < l .  
f ~ [ a . b l  a.P 

Y E W  

(11) The functions a'"'(,; t ) ,  b " ( x ;  t )  are differentiable with respect to x up to the 
third order and c ( x ;  t )  is continuous. This condition follows from our previous 
considerations ( A M ) .  

(111) The following functions exist and are bounded on R "  x [ a ,  b ]  by a common 
bound Q <a: 

a ' " P (  ) b"( 1 c( 1 dya'r 'B(  )a,b"( ) d Y d 6 U C V f i (  1 
~ 3 ? a ' " ~ (  ) a ? b Y  1 a?c( for m = 1, 2. 
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Theorem3.1. Suppose that 3(x ,  D ;  t )  = A+L?(x, D ;  t )  satisfies conditions 1-111. Then 
( a )  by remark 3 ,  equation ( 3 . 1 )  defines a family of propagators U (  t ,  s), t 2 s E [a, b ] ,  

with properties ( a ) - ( e )  (here Z = A,  L( t !  = g ( x ,  D ;  t ) ) ;  
(b )  for any f (  ; s )  E L' (R") ,  f (  ; t )  = U (  t ,  s)f( ; s)  is given by the path integral 

expressions (1 .3 )  and (1.4), where the limit is taken in the norm on L ' (R" )  and for 
any sequence of discretisations a s = th, < t,, -, < . . . < t ,  < to = t s b such that AtN is 
bounded. 

Proof: It is easy to verify that the conditions (A) ,  (B) and (C) are satisfied for Z _= A, 
L( t )  = L?(x, D ;  t )  and 9" = C;(R") using the assumptions 1-111 and the arguments of 
relative boundness as in A M  (example ( 1 ) ) .  Therefore, by remark 3 statement ( a )  is 
true. To prove (b)  we have to check that the conditions 1-111 imply conditions ( i ) - ( i i i )  
with F (  t ,  r )  given by the following integral: 

F , , , ( x l y )  = (4rfr)-"'~la(x; t ) l - l ' I  exp{.rc(x; t )  

- (1/47)U,,p(X; t ) [ x "  - J ' O  + r b " ( x ;  t ) ] [ x p  - y p  + 7bp(X;  t ) ] } .  (3 .3 )  

Indeed the path integral expression (1.4) is an explicit representation of the product 
formula (2.7) in this case. The conditions ( i )  and ( i i )  may be checked exactly in the 
same way as in AM since by 1-111 all estimations are uniformly bounded with respect 
to t E [a, b ] .  Hence we need to verify condition (iii) only. 

Let 

For a fixed x E R "  and t E [a, 61 we can transform 

y a  + z ,  = a $ ( x ,  t ) ( y P  - x P  - 7 b p ( x ,  t ) ) .  

Hence (x is fixed) 

y e ( z ;  r ) = x ' + r b " ( x ;  t ) + a $ 2 ( x ,  t)z, 

and ( K , , , f ) ( x )  takes the form 

By the mean-value theorem of differential calculus, for fixed z there exists 6 E [0, r ]  
such that 

f (y (z ;  7) )  - f ( y ( z ;  0)) = 7b0(X, t)af(y(z, 0 ) ) l d Y " .  (3.6) 
Using now the following identity (valid for smooth enough +( ) )  
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where 

x (xP - r P  + ebP(X;  r ) ) ]  

0 = e(x, y )  E [0, 71 and R,,,(xly) is obtained from R r T ( x ( y )  by putting e = 0. 

such that 
There exist constants M ,  K and A independent of x,  ER" and r E [ a ,  61, T E  (0,s) 

Hence the norms of operators RH([; r ) R ( t ;  T )  are uniformly bounded for t E  [ a ,  61, 

Finally, using the relative boundness of the operators pus,, X"Pd,d, with respect 
T E  (0, 6 ) .  

to A ( p * ,  X o p  ER) on CoT(R"), we obtain the estimation (iii). 
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